Yatton Schools Calculation Policy

Summary

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Saying which number is one more than a given number. Finding the total number of items in two groups by counting all of them. Finding the total by starting at the bigger number and counting on.	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10	Adding three single digits. Column method no regrouping.	Column method regrouping. (Up to 3 digits)	Column method regrouping. (Up to 4 digits)	Column method regrouping. (with more than 4 digits) Decimals - with the same amount of decimal places	Column method regrouping. Decimals - with the different amounts of decimal places
	Taking away using objects or drawing and crossing out. Saying which number is one less than a given number. Subtracting two single digit numbers by counting back.	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Finding the difference Part whole model Make 10 Column method no regrouping	Column method regrouping. (Up to 3 digits)	Column method regrouping. (Up to 4 digits)	Column method regrouping. (with more than 4 digits) Decimals - with the same amount of decimal places	Column method regrouping. Decimals - with the different amounts of decimal places
	Doubling	Doubling Counting in multiples	Doubling Counting in multiples Repeated addition Arrays - showing commutative multiplication	Counting in multiples Repeated addition Arrays - showing commutative multiplication; Grid method (2 digit by 1 digit multiplication)	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	$\begin{aligned} & \hline \text { Column } \\ & \text { multiplication } \\ & \text { (multi digit } \\ & \text { numbers } \\ & \text { multiplied by a } 2 \\ & \text { digit number) } \end{aligned}$

$\frac{.0}{\square}$	Halving and sharing	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short Division (2 digits by 1 digit concrete and pictorial)	Division within arrays Division with a remainder Short Division (up to 3 digits by 1 digit- concrete and pictorial)	Short Division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number interpret remainders as whole numbers, fractions as required)

Concrete manipulatives used to support learning:

Dienes/Base 10

Counters/Place value counters

abacus

Addition

Objectives and strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model			$\begin{align*} & 4+3=7 \\ & 10=6+4 \tag{5}\\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram as } \\ \text { shown above to } \\ \text { move into the } \\ \text { abstract. } \end{array} \end{align*}$
Starting at the bigger number and counting on	Start with the larger number on the bead string, and then count on to the smaller number one by one to find the answer.	$12+5=17$ Start at the larger number on the line, and count in ones or in one jump to find the answer.	$12+5=17$ Hold the larger number in your head and count on the smaller number to reach your answer.
Regrouping to make 10	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10. $9+5=14$ (1) 4	$7+4=11$ If I am at 7, how many more do I need to make 10 ? How many more do I add now? $\begin{aligned} & 7+3=10 \\ & \text { so } 7+3+1=11 \end{aligned}$

Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make ten, and add on the number left over.
Column method without regrouping	First, add together the ones, then add the tens. Use Dienes, straws or Multilink to support understanding, before moving on to place value counters. $44+15$	After practically using the Dienes and place value counters, children can draw the Dienes or counters using a place value frame to help them to solve additions. $32+23=$	Add the ones first, then the tens, then the hundreds. $\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
Column method with regrouping	This process should first be modelled with the Dienes to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. Add, re-group 10 ones for a ten and 10 tens for a hundred. - ...continued	Children draw a pictorial representation of the place value frame and counters to further support their learning and understanding re-grouping the ten underneath the equals line.	Start by partitioning the numbers before moving on to formal written methods clearly show the re-grouping. $25+48$ $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$

Subtraction

Objectives and strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-4=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 7-4=3 \\ & 6=8-2 \\ & 18-3=15 \end{aligned}$
Counting back	$7-2=5$ Move objects away from the group, counting backwards. Make the larger number in your subtraction. Move the beads along the bead string as you count backwards in ones.	Count back in ones using a number line. This can progress all the way to counting back using two 2 digit numbers.	$13-4=9$ Put 13 in your head, count back 4. What number are you at?

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on using a number line to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sweets, her sister has 15 sweets. Find the difference between the number of sweets. Ben has 12 marbles and his brother has 5. How many more marbles does Ben have than his brother?
Part-whole model	Link to addition - use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	Move to using numbers within the part whole model.

Make 10	$14-5=9$ Make 14 on the tens frame. We will partition the 5 . Take away the 4 first to make 10 and then take away 1 more so you have taken away 5 .	$13-7=6$ Use a number line. Start at 13. Partition the 7 into a 3 and a 4 so can take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. $13-7=6$ [3]	$16-8=8$ Partition the 8 (to 6 and 2). How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	Use the Dienes to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw the Dienes or place value counters alongside the written calculation to support understanding.	Intermediate step of partitioning. $\begin{gathered} 47-24=23 \\ 40+7 \\ -20+4 \\ 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction. $\begin{array}{r} T 0 \\ 47 \\ -24 \\ \hline 23 \\ \hline \end{array}$
Column method	Use Dienes to start with before moving onto place value counters. Start with one regrouping before moving onto	Use Dienes or place value counters and cross off.	Children can start their formal written method by partioning

	Now I can take away 8 tens and complete my subtraction. Show how the concrete method links to the written abstract method alongside your workings. Cross out the numbers when regrouping and show where and how we write the new amount.		$\begin{array}{r} { }^{6} 7^{10} X^{\prime} 6{ }^{8} 9 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \\ -\times 30 \cdot 5 \cdot 3 \mathrm{k} 119 \mathrm{~kg} \\ -36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

Multiplication

Objectives and strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. Use Numicon, Dienes, bricks etc	Draw pictures to show how to double a number.	Partition a number and then double each part before recombining it back together.

Counting in multiples	Skip count in multiples supported by concrete objects in equal groups.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers: $2,4,6,8,10 \ldots$ $5,10,15,20,25,30 \ldots$
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problem There are 3 sweets in one bag. How many sweets are in 5 bags altogether? $5+5+5=1$	Write addition sentences to describe objects and pictures.
Counting in multiples from 0 (repeated addition)	Count the groups as children skip count. Use bar models.	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count out loud in multiples of a number. Write sequences with multiples of numbers: $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \end{aligned}$

	$5+5+5+5+5+5+5+5=40$111 111 111 111 	snysme sinam, sing an 3 3 3 3	$0,5,10,15,20,25,30$ Write multiplication number sentences: $4 \times 3=12$
Arrays showing commutativ e multiplication	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. $4 \times 3=12$ and $3 \times 4=12$ Link to area of rectangles.	$\begin{aligned} & 12=4 \times 3 \\ & 12=3 \times 4 \end{aligned}$ Use an array to write multiplication number sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Use the inverse	Use cubes/counters to support the visual representation.		Show all 4 related fact family sentences. $\begin{aligned} & 4 \times 2=8 \\ & 2 \times 4=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \end{aligned}$
Partitionin g/ Grid method	Use Dienes to move towards a more compact method. $4 \times 13=$	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking:	Children use partitioning and use the multiplication facts that they know to help them by making numbers $10 \times$ smaller to multiply then make them $10 \times$ bigger in the answer. $\begin{aligned} & 24 \times 3= \\ & 20 \times 3=60 \\ & 3 \times 4=12 \\ & 160+12=72 \end{aligned}$
Column multiplication	Children continue to be supported by Dienes equipment. This is initially done where there is no regrouping e.g. $321 \times 2=$	Bar models and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding children about lining up their numbers clearly in columns.

	Progressing to re-grouping, always multiply the ones column first. The corresponding long multiplication is modelled alongside. - ...continued 327 X 4 It is important at this stage that they always multiply the ones first.	$\begin{array}{\|l\|} \hline 59 \\ \hline \ldots .59 \\ 8 \times 59 \\ =8 \times 60-8 \\ 8 \times 6=48 \\ 8 \times 60=480 \\ 480-8=472 \end{array}$ $[59]$ $\xrightarrow{25041} \xrightarrow{10}$ $\begin{gathered} 4-4+8+8=16 \\ 5=8=40 j=46 \end{gathered}$	Initially, Children to write out what they are solving next to their answer to help them understand the process. Multiplying decimals up to 2 decimal places by a single digit. Remind children that the single digit belongs to the ones column. Line up the decimal points in the question and the answer.

			$3 \cdot 19$ $\times \frac{8}{2} \cdot 52$ 2

Division

Objectives and strategies	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes, can you share them equally into 2 groups?	Children use pictures or shapes to share quantities.$8 \div 2=4$	8 flowers shared between 2 people is 4
	10		
	-6	Sharing:	12 shared between 3 is 4
		12 shared between 3 is 4	then...
		understanding.	$12 \div 3=4$

Division as arrays (see multiplicatio n above)	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{aligned} & \text { e.g. } \\ & 15 \div 3=5 \\ & 15 \div 5=3 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplictaion and division sentences by creating four linking family number sentences. e.g. $15 \div 3=5$ $15 \div 5=3$ $5 \times 3=15$ $3 \times 5=15$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left.	Jump forward in equal jumps on a number line, then see how many more you need to jump to find a remainder: Draw dots and group them to divide an amount to clearly show a remainder: Use bar models to show remainders:	Complete written division number sentences and show the remainder using ' r '. $14 \div 3=4 \text { r } 2$

Short division	$96 \div 3$	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently. - ...continued	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. - ...continued

Use place value counters to divide using the bus stop method alongside

Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.

We exchange this ten for ten ones and then share the ones equally among the groups.

We look how much in 1 group so the answer is 14 .

Finally move into decimal places to divide the total accurately.

